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Abstract: In addition to being a protective shield, the cornea represents two thirds of the eye’s refractive power. Comneal pathology can
affect one or all of the comeal layers, producing comeal opacity. Although full comeal thickness keratoplasty has been the standard pro-
cedure, the ideal strategy would be to replace only the damaged layer. Current difficulties in corneal transplantation, mainly immune re-
jection and shortage of organ supply, place more emphasis on the development of ariificial comeas. Bioengineered comeas range from

prosthetic devices that solely address the replacement of the comeal function, to tissue-engineered hydrogels that allow regeneration of
the tissue.

Recently, major advances in the biology of comeal stem cells have been achieved. However, the therapeutic use of these stem cell types
has the disadvantage of needing an intact stem cell compartment, which is usually damaged. In addition, long ex vive culture is needed to
generate enough cell numbers for transplantation.

In the near future, combination of advanced biomaterials with cells from abundant outer sources will allow advances in the field. For the
former, magnetically aligned collagen is one of the most promising ones. For the latter, different cell types will be optimal: 1) for epithe-
lial replacement: oral mucosal epithelium, ear epidermis, or bone marrow- mesenchymal stem cells, 2) for stromal regeneration: adipose-
derived stem cells and 3) for endothelial replacement, the possibility of in vitre directed differentiation of adipose-derived stem cells to-

wards endothelial cells provides an exciting new approach.
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I. DISEASES AND CLINICAL PROBLEMS OF THE COR-
NEA AND OCULAR SURFACE

The anterior part of the eye is formed by the sclera, the “white”
part of the eye, and the cornea, the central, transparent one (Figs.
1A and 1B). The ocular surface corresponds to the part that is ex-
posed anteriorly, whose function is to protect the eye from external
insult and allow visual function. It includes the conjunctiva and the
comeal epithelium. Both the conjunctiva and the cornea are always
covered, in a healthy eye, by the tear film. The tear film allows for
the adequate trophism of the comeal epithelium, the antibacterial
protection of the ocular surface, and the refractive properties of the
eye [1].

Histologically, the conjunctiva shows a non-keratinized strati-
fied epithelium with goblet cells producing mucine, an essential
part of the tear film, and a loose and richly vascularized stroma,
with numerous immune cells. In a healthy eye, the conjunctival
epithelium does not cover the surface of the comea.

In addition to being a protective shield, the comea represents
two thirds of the eye’s refractive power. The comea is composed
mainly of three layers (Fig. 2). . The non-keratinized stratified
epithelium, with no goblet cells. 2. The avascular and transparent
corneal stroma that represents 90% of the comeal thickness, which
is formed mainly of ordered collagen fibrils and proteoglycans and
the cells that secrete them, the keratocytes. And the endothelium, a
thin cell layer with extraordinary pumping functions in contact with
the aqueous humor of the anterior chamber of the eye. The acellular
basement membrane separating stroma and endothelium is known
as Descemet’s membrane (Fig. 2).

The comneoscleral border is termed the limbus (Fig. 1A and 1B).
Most studies locate the stem cells responsible for the tumover of the
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specialized comeal epithelial cells in the limbus, because comeal
epithelial repopulation is both centripetal and apical, as in other
epithelia [2-5].

Chemical or thermal bums, autoimmune diseases, infections,
prolonged contact lens wear, iatrogenia (chronic topical treatments,
multiple ocular surgerics) may damage the conjunctiva and the
comeal limbal siem cells. Some hereditary deficiencies (especially
the disease called aniridia) specifically show a dysfunction of the
limbal stem cells. In response to the external insult, the conjunctiva
scars, loses its goblet cells, becomes rough and dry and can no
longer perform its function of protection and lubrication of the ocu-
lar surface. The loss of comeal limbal stem cells causes inability to
maintain the normal specialized comeal epithelium. In order to
compensate for the lacking comeal epithelium, the conjunctiva
grows into the comea. However, since the characteristics of the
conjunctival epithelium make it inadequate to provide the smooth
and transparent surface that the cornea needs to allow good vision,
the comeal surface becomes irregular, with frequent epithelial ero-
sions, vascularization and tendency towards stromal scarring. The
limbal stem cell deficiency may be partial or complete, depending
on the degree of loss of stem cells in the affected area, and total or
partial, depending on the number of clock hours the limbus has
been affected. These characteristics, and its uni- or bilaterality, will
decide the therapeutic options, which will be based on the replace-
ment of the normal corneal epithelium through the potentiation of
the residual healthy stem cells or through a stem cell transplant [6].
However, the high expression of HLA antigens in the limbus in-
creases the risk of rejection when allogenic comeo-limbal-scleral
transplants are performed.

When the corneal stroma is also harmed, the degree of the le-
sion determines how the corneal wound heals: the keratocytes may
produce new extracellular matrix and new collagen fibrils, and
regenerate the stromal tissue while maintaining its transparency.
However, greater damage causes keratocyte loss, infiltration by
inflammatory cells, tissue destruction, and leads to more profound
repairing mechanisms: the extracellular matrix becomes denser and

© 2010 Bentham Science Publishers Ltd.




196 Current Stem Cell Research & Therapy, 2010, Vol. 5, No. 2

~ Sclera

f
.
L
i
L

Eyelid

Limbus

Sclera

Fig. (1). Anatomical parts of the eye. A: Photograph of a human eye. 10x.
B: Schematic representation of an eye sagittal section.

the collagen fibrils more disorganized, the stroma is filled with
fibroblasts and blood vessels, and therefore the comea loses its
transparency. The way to restore it is to replace the comea with a
new, transparent one: a comeal grafl. Due to the moderately high
expression of HLA antigens in the cornea, the main problem in the
long-term is the risk of rejection. To overcome this problem, sev-
eral keratoprosthesis have been used with different results, but all of
them encounter other complications such as infections and dehis-
cence that prevent them from constituting the definitive solution for
corneal replacement [7-8]. The possibility of stromal repopulation
and regeneration with cells from the host could decrease the need
for allogenic comeal grafis.
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The corneal endothelium covers the internal face of the comea,
in contact with the aqueous humor. Its main function is to keep the
cornea in its optimal state of hydration and therefore transparent.
The endothelial cells are the comneal cells that show the lowest mi-
totic activity [9-11]. Therefore, when after surgeries, traumas, etc.,
or just spontancously, the number of endothelial cells decreases
below a certain threshold, the cornea becomes edematous and loses
its transparency. Currently, the only way to restore the endothelial
function is to perform an allogenic graft, with the secondary risk of
rejection. The possibility of growing autologous endothelial cells in
the laboratory would improve the long-term outcomes in these cor-
neas.

Fig. (2). Histological layers of the comea. H&E stained rabbit’s cornea. Ep:
epithelium. Str: Stroma. End: Endothelium. Des: Descemet membrane.
200x.

2. ACELLULAR TREATMENT FOR THE CORNEA AND
OCULAR SURFACE

Current difficulties in comeal transplantation, which are mainly
primary immune rejection and shortage of organ supply, place more
emphasis on the development of artificial comeas. Such replace-
ments must fulfill the most important functions of a normal comea,
mainly refraction, transparency and protection. Bioengineered cor-
neas are designed to replace part of the full thickness of a damaged
or diseased comea. They range from prosthetic devices that solely
address replacement of the corneal function to tissue-engineered
hydrogels that allow some regeneration of the host tissue,

The idea of an artificial comea originated already in 1771 when
Guillaume Pellier de Quengsy suggested replacing an opaque cor-
nea with a silver-rimmed glass window, (reviewed in [12]), but it
was not put into practice until 1853 when Nussbaum placed a
quarlz crystal implant in a rabbit’s eye [13].

The ideal keratoprosthesis is defined as an epithelialized artifi-
cial button that could be implanted in a similar fashion to a pene-
trating keratoplasty [14]. Most of the recent designs employ a flexi-
ble, optically functional core intimately bonded to a surrounding
microporous skirt that permits fibroblast ingrowth and extracellular
matrix deposition, thereby providing anchorage and complete inte-
gration. The posterior surface should prevent attachment and prolif-
cration of cellular component, therefore avoiding the formation of
retroprosthetic membrane formation. It also has to allow for endo-
thelial growth to prevent edema. Furthermore, in order to maintain
any cellular component of the device, the optic must be permeable
to oxygen and nutrients.

Clinically available keratoprostheses still have significant limi-
tations such as retroprosthetic membrane inflammation and devel-
opment of glaucoma, and are only used to treat the most high-risk
patients. Some of the more commonly used keratoprosthesis are
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briefly described in Table 1 [15-25]. An example of a keratopros-
thesis made of polymethyl-methacrylate is shown in Fig. (3).

Newer keratoprostheses, like Aachen (silicone) used for short
time surgery aid or SupraDescemetic (HEMA-MMA34) non pene-
trating keratoprosthesis, which avoids penetration of the prosthesis
into the anterior chamber, and maintained Descemet’s membrane
and endothelium preservation have shown promising results [25],
although further studies are still needed to solve crucial limitations.

3. TISSUE TRANSPLANTATION FOR THE CORNEA AND
OCULAR SURFACE

Comeal pathology can be limited to one of the corneal layers or
affect the full thickness, producing comeal opacity and therefore
diminished visual acuity. Although full comeal thickness or pene-
trating keratoplasty (PKP) (Fig. 4A) has been the standard proce-
dure for most of the discases, the ideal strategy would be replacing
only the damaged layer [26].

3.1. Corneal Epithelium

Several surgical interventions use donor comeal tissue to treat
ocular surface diseases with limbal stem cell deficiency. Amniotic
membrane (AM) transplantation is often associated with limbal
grafiing to increase success rates. Moreover, comeal transparency is
compromised on many occasions, and reconstruction of ocular sur-
face is followed by penetrating or lamellar keratoplasty [27-32).

In contrast to standard comeal grafting, systemic immunosu-
pression with cyclosporine A and/or mycophenolate mofetil main-
tains graft survival following limbal stem cell transplantation [32,
33].

3. L1, Conjunctival Limbal Autograft (CLAU)

CLAU [34] is useful in unilateral limbal stem cell deficiency,
such as in chemical or thermal burn of the comnea [33]. A conjunc-
tival-limbal graft from the unaffected contralateral fellow eye is
dissected and sutured into the recipient eye. The maximum amount
of tissue that can be taken from the donor eye are two grafts of no
more than 3 clock hours each taken from 12 and 6 clock hours.
High reported success rates in most of the series have been re-
ported, with long term survivals of up to 61% after 6 years [35] and
improvement on visual acuity in around 2/3 of the eyes [28].

3.1.2, Living-Related Conjunctival Limbal Allograft (IrCLAL)

LrCLAL uses a conjunctival-limbal graft obtained from a pa-
tient's living relative to provide some degree of immune histocom-

Current Stem Cell Research & Therapy, 2010, Vol. 5, No. 2 197

patibility. Systemic immunosupression, although not always used,
was associated with a further increase in survival rates [30]. Stable
surface was achieved in 80-100% of patients after 17-24 months as
reported by different authors [30, 36, 37, but long term results are
lacking.

3.1.3. Keratolimbal Allograft (KLAL)

KLAL [34, 38] is a technique in which allogenic cadaveric lim-
bal stem cells are transplanted to a recipient eye using the periph-
eral rim of comea-scleral tissue (including limbus) as a carrier [39,
40]. It is mainly used to treat severe bilateral ocular surface disor-
ders and unilateral disease if there are concerns about damaging the
healthy fellow eye. This procedure produces best results in diseases
with minimal conjunctival involvement such as aniridia or iatro-
genic limbal stem cell deficiency [32]. Severe Stevens Johnson
syndrome (SJS), ocular cicatrizial pemphigoid or recent chemical
injuries, have poorer prognosis in the long term. In a series of 39
patients by Solomon er al. [41], the overall survival of ambulatory
vision was 53.6% at 3 years and 44.6% at 5 years, significantly
worse in SIS, In another case series by llari er al. [31] that included
23 eyes, graft survival rate was 54.4% at | year, 33.3% at 2 years,
and 27.3% at 3 years.

3.1.4. Homologous Penetrating Central Technique of Sund-
macher’s Limbo-Keratoplasty or Eccentric Keratolimbal Allografi

First described as a penetrating procedure [42], it can also be
performed as lamellar surgery [43]. It consists of an eccentrically
trephined donor cornea, which includes limbus in 1/3 of the circum-
ference. The donor button is placed centrally in the recipient cor-
neal bed, so limbal tissue can be identified within the paracentral
clear comea. After 5 years, 65% of HLA matched grafis but only
14% of the untyped grafls were centrally clear [44], despite the use
of systemic immunosuppressant.

In summary, autologous tissue transplantation is a reasonable
option for unilateral ocular surface disease, especially when there is
no total limbal stem cell failure. On the contrary, allogenic tissue
transplantation has an only moderate-mild degree of success in the
long term.

3.2, Corneal Stroma

Partial thickness or lamellar surgery has gained momentum re-
cently, despite its higher technical complexity than PKP. Superfi-
cial (ALK) or deep anterior lamellar keratoplasty (DALK), replaces
only the stromal tissue that is abnormal or damaged (Fig. 4B), spar-

Tablel.  Common Used Keratoprosthesis and their Most Common Complications
Keratoprosthesis Type Background Core/Skirt Skirt/Haptic Survival Most Common
Reports Complications
Osteo-Odonto Kerato- 1963[15], best proven Polymethyl- Patient tooth 85%at 18 years Retroprosthetic membrane
prosthesis results [16-18] methacrylate [18] (RPM), inlammation, support
(PMMA) optical tissue resorption, glaucoma.
cylinder
Dohlman-Doane Introduced in the PMMA PMMA 75%at 10 RPM, glaucoma.
1990s [19] months [20]
Seoul-Type 2002 [21] PMMA and fluori- | Polyurethane or poly- 66% at 62 RPM, retinal detachment,
nated silicone propylene months [22] glaucoma and endophthalmitis.
BIOKOP 1993 initial results PMMA/silicone Porous expanded 36%at 25 Comeal melting, en-
good, recent studies polytetra- months [23] dophthalmitis, extrusion, RPM,
disappointing maybe fluoroethylene dislocation.
due to patients char-
acteristics
AlphaCor 1997 [24) Flexible paly2- Opaque porous 80%at 12 Melting, retroprosthetic mem-
hydroxyethyl- sponge pHEMA months [25] brane, calcium deposition.
methacrylate
(PHEMA)
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ing the healthy Descemet membrane and endothelium [45]. This is
the procedure of choice in purely stromal diseases such as stromal
dystrophies, comneal scarring or keratoconus. Visual outcome is
comparable to standard penetrating keratoplasty (PK) when expo-
sure of the Descemet membrane is achieved in deep anterior lamel-
lar keratoplasty [46].

,# k P T S e ‘\Ar”

Fig. (3). Keratoprosthesis made of polymethyl-methacrylate in a human eye.
10x.

3.3. Corneal Endothelium

Endothelial keratoplasty, such as Descemet stripping automated
endothelial keratoplasty (DSAEK), which is the most popular tech-
nique of its kind, replaces diseased host Descemet membrane and
endothelium with a healthy donor posterior comeal button which
includes some posterior stroma (50-100 pm), Descemet and endo-
thelium [47]. The results of DSAEK surgery compared to conven-
tional penetrating keratoplasty have shown more predictable results,
quicker and with fewer postoperative complications. For example, a
case series showed that 97% of the 74 eyes had a vision of 20/40 or
better at 6 months and 14% obtained 20/20 or better [48]. Trans-
plantation of the pure Descemet-endothelium complex has been
described in the Descemet Membrane Endothelial keratoplasty
(DMEK), but it is technically more difficult, has higher rates of
failure, and still needs to show superiority over DSAEK [49].

4, CELL THERAPY FOR THE CORNEA AND OCULAR
SURFACE

One of the most recent approaches to overcoming corneal dam-
age is the use of Cell Therapy. Different types of cells have been
used in this strategy.

4.1. Celis from the Eye

4.1.1. Corneal Epithelium

The limbus is the anatomical junction between the comea and
the conjunctiva (Fig. 1A &B). The theory of the limbal zone serv-
ing as a source of comeal epithelial cells was first suggested in
1971 by Davanger and Evensen [50]. In 1986, Schermer et al. [3])
created a model of corneal epithelial maturation in vitro and, using
a monoclonal antibody against a 64kD keratin (a marker of mature
epithelium), were able to characterize two cell populations at dif-
ferent stages of maturation — the suprabasal and the basal one. The
latter was the youngest, and thus the progenitor. They also demon-
strated that 64kD keratin was suprabasally located in the limbus.
However, it was present throughout the central comeal epithelium,
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basal cells included. They concluded that the limbus was the niche
of comeal epithelial stem cells, as confirmed later by other re-
searchers [51]. Several reviews have been published about this
issue [52-55]. Recent studies have suggested that the limbus is not
the only niche for comeal stem cells [56]. They demonstrated that
the entire ocular surface of the pig, including the comea, contains
stem cells with the ability to generate individual colonies of corneal
and conjunctival cells.

g o = s » = .
Fig. (4). Human comeal transplants. A: Penetrating keratoplasty. B: Lamel-
lar keratoplasty. 20x.

Transplantation of ex vive expanded limbal epithelial stem cells
(LESCs) to reconstruct the ocular surface has been advocated as an
alternative to direct grafting of the limbus, as detailed in section 3.
It has several advantages over tissue transplantation, such as the
possibility of autografling with cells obtained from minimal biopsy,
and harvesting higher number of cells from a single donor without
transplanting the immunogenic limbal tissue. On the other hand, as
we will see, stem cells lose their original niche, and it is unclear if
this, in the end, exhausts the stem cell capacity of the cells.

There are several clinical situations in which the limbus may be
partially damaged. In these cases transplantation of AM alone may
be sufficient to restore the comeal surface as it promotes the expan-
sion of the residual LESCs [57-61]. However, if extensive damage
is present, cell therapy is needed.

Several techniques have been used in order to cultivate LESCs,
Firstly, Lindberg ef al. [62] used a feeder layer system consisting of
irradiated 37T3 fibroblasts which enable cell growth from limbal
biopsy specimens as small as 1 mm?. Pellegrini e/ al. [63] were the
first to describe and successfully transplant autologous cultured
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comeal sheets obtained by this method in two patients. Cell sheets
were mounted either on a petrolatum gauze or on a sofl contact lens
and placed on the injured eye after removing the conjunctival epi-
thelium. Secondly, the suitability of different carriers for cultivating
LESCs has been tested, AM being the most appropriate one.
Schwab, [64] was the first to successfully transplant autologous ex
vivo expanded epithelial stem cells on denuded AM in patients,
Several groups have later demonstrated the efficiency of this
method [65-70]. The technique consists of obtaining expanded
LESCs from a 1-3 mm? limbal biopsy from a healthy eye cultivated
on 3T3 cells. Then AM is processed in order to remove its epithe-
lium leaving the basement membrane intact. This structure is placed
at the bottom of culture dishes and the donor epithelium is then
harvested and cultured on the basement membrane side of the AM.
After confluency is reached, everything is transplanted onto the
denuded stromal corneal surface. Regarding these studies, other
authors have compared the usefulness of intact and denuded AM as
substrate [71, 72]. The epithelial outgrowth was quicker when cells
were cultured onto denuded AM compared to intact AM. Likewise,
the stratified appearance of this culture was similar to that of nor-
mal corneal epithelium, whereas intact AM culture didn’t show a
normal comeal epithelial morphology [71]. Grueterich et al. [72]
used comneal differentiation markers, like keratin 3 (K3) and con-
nexin 43 (Cx43), which are expressed on the basal layer of corneal
epithelium but not on that of limbal epithelium, to address the proc-
ess that was taking place in these two different cultures. In this
work, the strongest expression of K3 and Cx43 on the basal layer
was found in cultures grown on denuded AM with a 3T3 feeder
layer. Afier transplantation, the full-thickness of the stratified epi-
thelium cultivated on denuded AM was positively stained, whereas
only suprabasal layers were positive for these markers in cultures
grown on intact AM. They concluded that denuded AM with 3T3
feeders was the best option for cultivating, differentiating and
transplanting comeal epithelial cells, whereas intact AM was more
suitable for maintaining LESCs in culture. In bilateral total disease,
if obtaining autologous healthy limbus proves impossible, fresh
cadaveric eyes [67] or living related donors [73] as a source of do-
nor cells may be used. Scientists have focused on improving tech-
niques to make these cell sheets more suitable and easier to manipu-
late. This was the case of Nishida er al. [74] who expanded ex vivo
human and rabbit LESCs co-cultured with mitomycin C treated 3T3
feeder layers on culture surfaces covalently coated with a tempera-
ture-responsive polymer. Sheets were harvested by reducing the
temperature. These kinds of sheets did not need suturing to attach
the stroma. Now what is of interest is to establish culture techniques
that do not require fetal bovine serum, feeders or any unknown
growth factor, as achieved in the studies of Nakamura et al. [75]
and Yokoo ef al. [76]. Several reviews have been published with
further information [77-79].

The outcome measures used to define successful treatment and
the follow up time are very heterogeneous and poorly described in
most studies (reviewed in [78]). Clinical parameters are the most
common measure of success, such as the establishment of a com-
plete transparent comneal epithelium and resolution of conjunctivali-
zation, vascularization and epithelial defects. Together, the studies
achieve 76% successful treatment. Visual acuity is another outcome
data some studies provide. In combination, the studies performed
reach 79% of success. The most controversial question that arises
from these studies is donor cell survival. As reviewed in [78], donor
cells may persist for 7 to 9 months but thereafter are replaced by
host cells [69, 78], suggesting that LESCs might promote the re-
generation of the epithelium by the proper host stem cell popula-
tion.

4.1.2. Conjunctival Epithelium

Cells of conjunctival origin are known to cover the corneal sur-
face after epithelial damage. The goblet cells from the conjunctiva
migrate to the injured area and transdilferentiate into comeal
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epithelial cells in a few days [80-82]. The existence of conjunctival
epithelial stem cells located in the fornical epithelium has been
reported [83]. Although conjunctival limbal graft associated with
AM has been performed (84, 85], cultivated conjunctival stem cells
have not yet been used in epithelial reconstruction.

4.1.3. Corneal Stroma

The presence of progenitor cells capable of differentiation into
functional comeal keratocytes was first described in 2005 [86).
These progenitor cells expressed stem cell genes and early neural
crest and ocular development genes such as PAX6. The same
authors also reported the presence of pluripotent cells with kerato-
cyle progenitor potential in the limbal comeal stroma [87]. When
keratocytes are expanded in vitro in a serum-containing medium
they lose their in vivo quiescent phenotype and acquire a fibroblas-
tic phenotype with abnormal physiological properties [88]. How-
ever, in serum-free cultures they maintain their dendritic morphol-
ogy and the production of keratan sulphate proteoglycans [89, 90].
In 2005 Yoshida et al. [91] reported a new method for subculturing
mouse keratocytes in large quantities in a serum free medium aim-
ing at maintaining their secretion of the comea-specific proteogly-
can keratocan, and the aldehyde dehydrogenase enzyme. Those
cells might be used to restore comeal stroma when damaged. More
recently, Mimura er al. [92] have constructed a substitute for cor-
neal stroma using comeal fibroblast precursors or comeal fibro-
blasts together with porous gelatin hydrogels in vitro and transplan-
tation into a rabbit model. In order to obtain the precursor cells,
they dissociated the stroma into single cells which were cultured in
a sphere-forming assay, and the primary spheres or the fibroblasts
were then applied to the hydrogel and cultured. The whole structure
was then transplanted into the rabbit ocular surface. They con-
cluded that transplantation of fibroblast precursors combined with
gelatin hydrogels is another possible treatment for corneal stromal
regeneration. However, rabbits were sacrificed one and four weeks
after transplantation, which makes it impossible to determine the
stability of the grafi. In our opinion, gelatin hydrogels might not be
strong enough to resist eventual mechanical damage to the comea.
In fact, there are several papers in which the authors state that their
scaffolds were “weak™ or “unstable” [93-95, reviewed in 96). Fur-
ther development of stronger stroma-like scaffolds needs to be de-
veloped (see later, Conclusions and Future Perspectives).

4.1.4. Corneal Endothelium

Whikehart et al. in 2005 [97] demonstrated the existence of en-
dothelial precursors in the human comeal endothelium for the first
time. They reported the presence of these cells adjacent to the endo-
thelial periphery at the limbal zone. In 2007 this group demon-
strated the existence of stem cell markers (nestin, alkaline phospha-
tase, telomerase, Oct-3/4 and Wnt-1) in the same limbal cells [98].
The last 2 markers appeared after wounding and so did the differen-
tiation markers Pax-6 and Sox-2. Similarly, Mimura ef al. [99] have
carried out a comparison of the central and peripheral comnea, find-
ing that although both zones contain endothelial precursors, the
peripheral one is enriched in these precursors.

The first studies using corneal endothelial cells for therapy did
not take advantage of these endothelial stem cells. In 1998 several
laboratories reported the isolation and long-term culture of human
corneal endothelial cells in vitro [100, 101] and the optimization of
their culture technique [102]. Some of them already used these cells
to carry out transplantation onto human comeas [100, 103]. In the
last 10 years several studies have reported the use of comeal endo-
thelial cells to restore injured corneal endothelium in many different
ways. Firstly, recipient comeas were stripped of their own endothe-
lium by different methods (mechanical, chemical or physical), the
last procedure proving to be the more efficient one. Cultured cor-
neal endothelial cells were then seeded onto recipient comeas fol-
lowed by centrifugation. They were then cultured and entirely
transplanted into the recipient eye and attached with sutures [104-
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106]. Functional studies of reconstructed comeas have shown that
they achieve a maximum of 75% of the pump function of normal
comeas [106, 107].

The most recent strategies use comeal endothelial precursors
and new techniques in order to improve the suitability of transplan-
tation. Using the sphere-forming assay, Mimura er al. [108] isolated
endothelial progenitor cells and created a new method for transplan-
tation. They injected the primary spheres with the human precursor
endothelial cells into the anterior chamber of comeal endothelium
deficient rabbits and showed that the graft reached almost 100%
functionality [108-110]. The same group has performed a study
using collagen sheet as a carrier. The Descemet membrane of the
recipient was removed, and cultured human comeal endothelial
cells were seeded on it. The sheet was then attached to the posterior
stroma [111]. This technique has been shown to be less functional.
All these experiments have been performed in rabbits and need a
very large amount of comeal endothelial cells. An allemative
source of endothelial precursor cells has to be searched for and
developed.

4.2, Cells from Extraocular Sources
4.2.1 Epithelium

Although LESC allograft is a feasible treatment option for bi-
lateral total limbal epithelial stem cell deficiency, there are risks
associated with it, such as graft rejection despite oral immunosup-
pressive treatment. The use of autologous cells from extraocular
origin could overcome some of these drawbacks. Nakamura er al.
[112] carried out an experiment using autologous oral mucosal
epithelial cells co-cultured with 3T3 feeders treated with mitomycin
C and AM as a carrier. After 48 hours the entire comeal surface
was free of epithelial defects and remained stable for about 13
months. By slit lamp examination using fluorescein staining they
confirmed the survival of oral epithelium manifesting the character-
istic staining pattermn different from both the comea and the con-
junctival epithelium. Yano and colleagues performed similar ex-
periments, but using the previously reported technique of tempera-
ture-responsive cell culture without AM as a carrier, both in rabbits
[113] and human beings [114]. After transplantation, reconstructed
ocular surfaces resembled native comeas morphologically, and
comeal surfaces were completely protected from fluorescein pene-
tration. As reviewed by Inatomi er al. [115], one of the most re-
markable benefits of this approach is the swift epithelization, apart
from also being an autologous source of cells that avoid rejection.
A potential area of concern is the relatively high rate of peripheral
comeal neovascularization [78, 112, 114, 115] although most of
those vessels did not cause any postoperative complications. Again,
further research is necessary,

Another approach to solving this problem has recently been
proposed by Yang et al. [116, 117]. They developed a method for
isolating and characterizing the epidermal adult stem cells (Epi-
ASC) from car of a goat. They cultured EpiASCs on denuded hu-
man AM and transplanted the autologous sheet onto the ocular
surface of a goat model of limbal stem cell deficiency. Although the
corneal surface was smooth and the epithelium was integral without
goblet cells, clearness was not achieved in all transplanted eyes.
Thirty percent of the treated eyes had whole transparent comnea,
however part of the limbus was opaque; 50% of the treated eyes
regained three quadrants of clear comea, but the limbus of those
eyes was also opaque. The remaining 20% failed. The authors com-
pared a series of markers of comeal epithelium in normal and re-
constructed corneas. Cytokeratins 3 and 12 and PAX-6 showed a
similar expression profile in normal and reconstructed comeas.

Very recent studies have suggested that bone marrow-derived
cells might be implicated in promoting comeal wound healing in
vivo [118). This finding might be supported by a proven strategy lo
repair corneal epithelial damage using human bone marrow-derived
mesenchymal stem cells (BM-MSCs), as reported for the first time

De Miguel et al.

in 2006 by Ma er al. [119]. Briefly, cultured human BM-MSCs on
AM were transplanted into chemically burned rat corneas achieving
the same results in comeal epithelization and vision acuity as
achieved by the same procedure using LESCs. Inhibition of both
inflammation and inflammation-related angiogenesis as the main
therapeutic effect was suggested, since human MSCs were detected
in the rat epithelium but did not express comeal epithelial markers
like CK3. These findings demonstrate the lack of differentiation of
MSCs into comeal epithelial cells. However, Gu et al. [120] have
found CK3 positive cells after transplanting BM-MSCs into a dam-
aged rabbit comea, although at a low percentage.

4.2.2, Stroma

The only published study using cells from an extraocular source
in order to regenerate a corneal layer different from the epithelium
is the one carried out by our laboratory [121]. We succeeded in
repairing damaged comeal stroma in a rabbit model using MSCs
from processed human lipoaspirate. We created a flap in the stroma
and a 50 pm thick ablation was made. Adipose derived mesenchy-
mal stem cells (ASC) were then delivered to the stromal pocket.
Rabbits were sacrificed 12 weeks afler transplantation. ASCs were
able to differentiate into functional keratocytes when transplanted
into the stroma, expressing keratocan and Aldh as normal kerato-
cytes do (Fig. 5). They also produced collagens type I and VI (the

Fig. (5). ASC regeneration of the comeal stroma. Human ASC were intro-
duced into partially-ablated stromal rabbit corneas and histologically sec-
tioned after 12 weeks. Human keratocyte-specific keratocan was immu-
nodetected, demonstrating ASC differentiation into functionally human
keratocytes in vivo. A: Phase contrast microphotograph. B: The same sec-
tion showing CM-Dil labeled human cells. C: Same section showing human
keratocan in some of the transplanted cells (arrow). Ep: epithelium. Str:
Stroma. 400x.
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main components of comeal extracellular matrix). Furthermore,
none of the rabbits showed immunological rejection. Our results are
now being further tested for long-term restoration and stability of
the transplanted cells in the stroma.

4.2.3. Endothelium

No studies have been performed using extraocular cell sources
for comeal endothelial reconstruction. Interestingly, ASCs can be
induced to differentiate into endothelial cells in vitro ([122, 123),
and our own unpublished observations, Fig. 6), opening a whole
new strategy for endothelial cell failure treatment. Our group is
currently performing studies to test this approach for endothelial
repair in vivo.

|

.,

Fig. (6). CD31 positive endothelial cells induced in vitro from human ASC.
100x.

v

5. CONCLUSION AND FUTURE PERSPECTIVES

In the past few years, great advances in ocular surface and cor-
neal stem cell identification and characterization have been de-
scribed. In particular, major advances in the biology of comeal
epithelial limbal stem cells [51, 124,125], comneal stromal stem
cells [86, 87], comeal endothelial stem cells [90, 126], neural crest-
derived comeal stem cells [91], limbal stromal mesenchymal cells
[127, 128] and endothelial precursors [97] have been achieved (for
review see [129]). However, despite these advances, the therapeutic
use of these stem cell types presents the challenge of a need an
intact stem cell compartment — constituting the main cause of the
need of a transplant in the first place — or, in cases where it is possi-
ble, the use of the stem cells of the healthy contralateral eye, as
autografts are more likely to succeed than allografts and do not
need immune suppression [69, 78]. Even for patients with only one
eye affected, the risk of damaging the stem cell compartment of the
healthy eye is high [130]. Also, the number of stem cells in each
compartment is very low, and long ex vivo culture is needed 1o gen-
erate sufficiently high numbers for successful transplantation.

As well as cell therapeutic approaches, new and improved bio-
materials compatible with human cornea have been developed lead-
ing to advanced scaffolds that can be used to engineer an artificial
cornea (keratoprostheses), such as poly-hydroxyethyl methacrylate
hydrogels [12, 131], collagen-chondroitin sulphate hydrogels [93,
132}, polyvinylpyrrolidone-coated silicon rubber [133, 134], polyu-
rethanes [135] and perfluoroethers [136], together with a myriad of
chemical modifications to promote epithelization (for review see
[137]). Most of these studies aim to develop the comeal stroma, due
to the high contribution of the stroma to the corneal thickness, to-
gether with its low cellularity (for an engineering-point-of-view
review see [96]).
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The combination of these scaffolds with cells is the future of
corneal tissue engineering (the so-called tissue-engineered corneal
equivalents). Some studies have already been published that use
mainly corneal cell lines (for an elegant review see [137]), includ-
ing comeal epithelium [138] and comneal stromal keratocytes [92,
139], or even the three corneal layers cells [93, 140].

In the near future, combination of advanced biomaterials with
autologous cells from outer sources where they are abundant will
allow further advances in the field. For the former, magnetically
aligned collagen [141], which provides both strength and transpar-
ency, is one of the most promising. For the latter, different cell
types will be the optimal sources for the different comeal layers: 1)
for epithelial replacement: oral mucosal epithelium, ear epidermis,
or BM-MSC [114, 117, 120], 2) for stromal regeneration; ASCs
[121] and 3) for endothelial replacement: although still in develop-
ment, the possibility of in vitro directed differentiation of ASC into
endothelial cells [122, 123], provides an exciting new approach.
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